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We examine the problem of finding the t empera tu re  field of a plate heated by a constant flow 
of heat f rom one end and re leas ing  heat to the solidified gas f rom the remaining sides through 
a gas in ter layer .  

In cer ta in  cases  we are confronted with the problem of finding the t empera tu re  field of a plate heated 
f rom one end and giving off heat to a solidified gas f rom the remaining sides. The dimensions and shape 
of the plate are shown in Fig. !a.  

A constant p re s su re  - below the p re s su re  of the tr iple point - is usually maintained over the surface 
of a solidified gas. Then, because of the limited thermal  conductivity of solidified gases,  the heat f rom the 
plate cannot be removed by conduction and an in ter layer  is formed about the plate as a consequence of the 
sublimation of the solid phase. The growth in the thickness of this in ter layer  impairs  the t r ans fe r  of heat 
between the plate and the medium and resul ts  in the gradual heating of the plate. 

To simplify the problem we will make the following assumptions:  

1. The heat load on the plate will be assumed to be a small and constant quantity, i.e., qx(x, T) I x=0 
= const = q0 (bearing in mind that the e r r o r  introduced by these assumptions is no g rea te r  than 5%, we took 
q0 to be less  than 0.3 W/cm2). 

2. On the strength of condition 1 we will assume that the plate t empera tu re  T var ies  over a small  
interval.  

3. The thermal  conductivity X and the specific heat capaci ty  c is assumed constant for  the entire 
plate. 

4. Because of the l imited plate thickness 5 we neglect the t r ans fe r  of heat between the plate and the 
medium in the direct ion of the y-axis .  

5. Considering condition 4, the limited thickness and high thermal  conductivity of the plate, we as -  
sume that the t empera tu re  does not change through the width and thickness of the plate and is a function 
exclusively of the coordinate x and of the t ime r; T = T(x, r). 

6. Fo r  the plate heat t r ans f e r  in the direct ion of the z -axis  we will substitute internal negative heat 
sources  of the same intensity, i.e., qz(X, r). 

Derivat ion of the differential heat-conduct ion equation for  the plate is accomplished in analogy with 
[1]. Let us examine the heat balance of the volume element shown in Fig. lb: 

Oq~ dx 5b - -  2q~dxb = c 9 0 T  _ dxbS. (1) 
Ox O~ 

Using the heat-conduction equation qx = - 4  (@T/~x), we find 

co OT (x, "0 )~ 02T (x, %1 2 
OT Ox 2 5 

q~ (x, ~). (2) 
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Fig .  1. S e l e c t e d  d i a g r a m  and cond i t i ons  of the  p r o b l e m .  

To find qz we e x a m i n e  the t r a n s f e r  of hea t  a t  the  s ide  s u r f a c e  lb  of the  p la te  at s o m e  a r b i t r a r y  in -  
s t an t  of t i m e .  As d e m o n s t r a t e d  in F ig .  2, a gas  c l e a r a n c e  with  a t h i c k n e s s  of h(x, T) is  f o r m e d  about  the  

p la te .  

7. We wi l l  a s s u m e  tha t  the  t r a n s f e r  of hea t  t h rough  th i s  i n t e r l a y e r  f r o m  the  p la te  to  the  s o l i d i f i e d  
gas  can  be  d e s c r i b e d  by  the  h e a t - c o n d u c t i o n  equa t ion ,  us ing  the e f f ec t i ve  coe f f i c i en t  of t h e r m a l  c o n d u c t i v i t y  
fo r  the  gas ,  i . e . ,  n e f f  = k~<, c o n s i d e r i n g  the  o t h e r  m e a n s  of hea t  and m a s s  t r a n s f e r  (convec t ion  and h e a t  
t r a n s f e r  by  m e a n s  of the  s u b l i m a t i n g  v a p o r s )  [2-5]. We can  then  w r i t e  

T (x, ~) - -  To (3) 
qz = •  h (x, ~) 

w h e r e  T O is the s o l i d - p h a s e  t e m p e r a t u r e  which  is  a s s u m e d  to be  cons tan t ,  s i nce  the p r e s s u r e  p = eons t .  

8. The e f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  %elf of the  gas  wi l l  be  a s s u m e d  to be  cons t an t  in each  s p e c i f i c  

t e s t ,  in the  l ight  of a s s u m p t i o n  2. 

9. The t h i c k n e s s  h of the  gas  c l e a r a n c e  is found on the a s s u m p t i o n  tha t  the  f low of hea t  f r o m  the s u r -  
f ace  /b in tim d i r e c t i o n  of t he  z - a x i s  goes  e n t i r e l y  to the  s u b l i m a t i o n  of t he  so l id  phase ,  i . e . ,  the  hea t  c a p a c i t y  
of the  gas  is  a l s o  n e g l e c t e d  in the  l ight  of a s s u m p t i o n  2. 

Equa t ing  the  hea t  i qz(x,  ~-)d-r evo lved  f r o m  a unit  s u r f a c e  of the  p l a t e  d u r i n g  the t i m e  T to the  hea t  of 
0 

s u b l i m a t i o n  of the  so l id  gas  b e n e a t h  th i s  uni t  s u r f a c e ,  we find the r e l a t i o n s h i p  

S qz (x, "0 d~ --- poro h (x, x). (4) 
0 

Using (3), we w r i t e  (2) in the  f o r m  

cp OT (x, "c) = k 02T (x, x) 2 T (x, x) - -  To 

O~ Ox 2 5 h (x, x) 
~eff (5) 

Let  us f ind the  b o u n d a r y - v a l u e  p r o b l e m s  fo r  (5). We a s s u m e  tha t  the  p la te  t e m p e r a t u r e  at  the  in i t i a l  
i n s t an t  of t i m e  is equa l  to the  s o l i d - p h a s e  t e m p e r a t u r e ,  i . e . ,  

T (x, o) = To. 

To find the b o u n d a r y  cond i t i on  fo r  x = 0 we use  the  cond i t ion  

OT 
q~ (0, T) = qo ~- - -  )~ (0, x). 

Ox 

N e g l e c t i n g  the hea t  t r a n s f e r  a t  the  end of the  p la te  when x = l, b e c a u s e  of the  s m a l l n e s s  of i ts  a r e a  6b 

as  c o m p a r e d  to the  s i de  s u r f a c e  2b/, we f ind 

OT 
q,: (l, z) = - -  X (l, "0 = O. 

Ox 
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Fig.  2. P r o p o s e d  shape of the gas c l e a r a n c e  about the pla te :  1) 
sol idif ied gas;  2) plate.  

The p r o b l e m  thus  r e d u c e s  to the solut ion of (5) fo r  the fol lowing boundary  condi t ions:  

T(x, 0)=To, T(x, ~)--To>O , ~>0; (6) 

0-f--r 0 ,  " 0 -  q~ ; (7) 
Ox ~, 

~ q, ~) = o. (8) 
Ox 

An M-20 digi tal  c o m p u t e r  was  used to solve (5) on the bas i s  of an implici t  s cheme  p ropsed  by Krank 
and Nieholson; the e r r o r  in the app rox ima t ion  of the d i f f e rence  s cheme  in this ease  is of the o r d e r  of 

e = 0 [(h~fl] + 0 [(Ax) ~1 = 0 (0.00P) + 0 (0.025"). 

It is convenient  to p re sen t  h(x, T) in the f o r m  

h(x ,  ~ ) = h ( x ,  T - - A T ) +  (x, ~ ) - - T  o • (9) 
9oroh (x, T - -  h~) 

The r e s u l t s  of the solut ion showed that  the plate v e r y  r ap id ly  (in l e s s  than 0.5 h) en t e r s  a t h e r m a l  r e -  
g ime  c lose  to the r e g u l a r ,  dur ing  which the t e m p e r a t u r e  at each point on the plate  r i s e s  l i nea r ly  with t ime,  
while the t e m p e r a t u r e  d i s t r ibu t ion  T(x, ~-) - T(1,  T) and the t e m p e r a t u r e  d i f fe rence  a c r o s s  the length of the 
plate  a re  independent of t ime.  After  e n t r y  into the r e g u l a r  r eg ime ,  we find that  qz v i r tua l ly  c e a s e s  to d e -  
pend on the coord ina te  x. This  can be explained by the cons t ancy  of q0 and by the fact  that  - because  of the 
s m a l l n e s s  of the r a t io  q0/~ - the t e m p e r a t u r e  d i f f e rence  a c r o s s  the length of the plate is smal l  in c o m p a r i -  
son with the d i f f e rence  be tween the plate and the solid gas.  The indicated c o n s t a n c y  of qz is in good a g r e e -  
ment  with the cons t ancy  of the t e m p e r a t u r e  d i f fe rence  a c r o s s  the length of the plate.  

We will  give an a pp rox i m a t e  ana ly t ica l  solut ion of the p rob lem,  us ing  the cons t ancy  of qz over  the 
length of the plate.  

On the bas i s  of condit ion 2 we will  neglec t  the heat  spent on a l t e r ing  the heat  capac i ty  of the plate as  
smal l  in c o m p a r i s o n  with the heat  expended on subl imat ion .  The h e a t - b a l a n c e  equat ion fo r  the en t i re  plate 
then y ie lds  

qz qo 6 , (10) 
2 l 

while (4) a s s u m e s  the f o r m  

q: -- P~176 (z) (11) 
T 

Equation (2) under these assumptions can be simplified 

L d2T(x'  ~) _ q0 (12) 
dx 2 l 

After double integration of this equation with the use of (7), we have 

T - -  qo X'~ qo x + q .  
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Fig .  3. A r r a n g e m e n t  of the plate and the shape of the gas 
c l e a r a n c e  about it: 1) h e a t e r ;  2) plate; 3) sol idif ied gas .  

To determine the integration constant el, let us examine the mean-integral temperature over the 
leng~ch of the pla te ;  this  is equal to 

l 

1 ~ qo l 
Tin=-7- T(x, ~)dx=c, ~ 3 

o 

On the other hand, the mean-integral temperature can be found from (3), (10), and (11): 

qo 2 53 1 
T m =  4 l 2 poro• ~ x + r~ 

(13) 

F r o m  the las t  t h r ee  equat ions ,  the e x p r e s s i o n  fo r  the t e m p e r a t u r e  field of the plate a s s u m e s  the f o r m  

T(x,  "O=To + qo x2 qo x +  qo l q2 52 1 
- -  - -  ~. ( 1 4 )  

)~ 21 )~ )~ 3 q- 4 l 2 poro• 

It fol lows f r o m  (14) that  the t e m p e r a t u r e  d i f f e rence  a c r o s s  the length of the plate is constant  in t ime,  i .e. ,  

T(0, ~)--T(I, ~)= qo _// . (15) 
)~ 2 

Since (14) and (15) have been derived on the assumption that qz = const, they will be valid on elapse of 
a certain period of time from the onset of heating, at which time we have a regime that is close to the reg- 
ular. 

The approximate solution (14) differs from the exact solution given by the computer by no more than 
3-5~0, but it substantially simplifies the calculations of the plate temperatures. 

We performed a number of experiments to determine the effective coefficient of heat transfer between 
the plate and the solidified gas. 

Solid nitrogen is used as the cooling agent; the test plate is frozen into the solid nitrogen, as shown in 
Fig. 3. The plate is fashioned of two parts with a thickness of 0.1 ram, with a double-helical heater attached 
in such a manner that it is not in electrical contact with either part of the plate. Differential copper-con- 
stantan thermocouples were used to measure the temperature difference between the plate and the solid 
cooling agent with a specified heater power which was determined by measuring the current and voltage in 
the circuit. The stability of the heat supply was ~1%. The temperature difference was measured with an 
accuracy of ~0.05~ 

To reduce spurious influxes of heat to the test plate, all of the leads were kept to a diameter of 0.1 
mm and, in addition, at some distance from the plate (of the order of 150 mm) the leads were interrupted 
with a temperature control set for a temperature close to that of the test plate. An experiment with a zero 
load on the plate showed that the plate temperature within the limits of measurement accuracy remains con- 
stant and equal to T o for 15-20 h, i.e., there is virtually no spurious influx of heat. 

Because of the smallness of the end surface in comparison with the side surfaces, we can neglect the 
transfer of heat at the end of the plate. Bearing this in mind, as well as the excellent thermal conductivity 
of the plate material, in addition to the fact that the heater was wound uniformly over the entire surface, we 
can assume that the plate exhibited an identical temperature over the entire surface In this connection, the 
plate temperature will be determined from (13), which can be presented in the form 

T(T) - - T  O =. - -  "~. (16) 
4neff poro 
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Fig .  4. Time va r i a t i on  in the t e m p e r a t u r e  g r a -  
dient between the hor izonta l  p la te  and the so l i d -  
ified gas for  va r ious  heat  loads ,  T - To, in ~ 
r ,  in h; Q0, in W: 1) Q = 0.1; 2) o.0563; 3) 0.0314; 
solid l ines  denote the t h e o r e t i c a l  r e l a t ionsh ip  
f rom (16) for  k = 1.5; the dots denote the e x p e r i -  
me nt. 

During the tes t ,  at a constant  heat  load Q0 on the 
plate ,  we m e a s u r e d  the t e m p e r a t u r e  d i f ference  T(r) 
- T O over  t ime .  The t e s t s  were  p e r f o r m e d  at var ious  

loads  Q0. 

The expe r imen t  showed that the plate t e m p e r a -  
lu re  can be de sc r ibed  by (16), but for  each spec i f ic  
case  we must l~ow the value of the effect ive coeff icient  
of t h e r m a l  conduct ivi ty  ~eff,  which, because  of the 
complexi ty  of the mechan i sm of heat  t r a n s f e r  to the 
sub l imat ing  medium, is a function of numerous  v a r i -  
ables .  In the genera l  ease ,  this  coeff ic ient  proves  not 
to be equal to the coeff ic ient  of t h e r m a l  conduct ivi ty  
for  the gas and is a function of the p r e s s u r e  of the 
sa tu ra t ed  vapors ,  the posi t ion (ver t ica l  or hor izonta l ) ,  
and the d imens ions  of the h e a t - r e l e a s e  sur face  and 
the magnitude of the heat  load Q0 on the spec imen,  
which in turn d e t e r m i n e s  the ra te  of subl imat ion  and 
the ve loc i ty  of the forced motion of the gas fn the c l e a r -  
ance. The e xpe r i m e n t a l  der ived  values for  Z e f f v a r i e d  

in a wide range f rom k = 1 to 4. Here  the t he r m a l  conductivi ty of the gaseous  ni t rogen was a s sumed  to be 
equal to z = 0.007 W/deg  �9 m. On a v e r t i c a l  p la te  the value of "~eff proved to be g r e a t e r  by a f ac to r  of 
1.3-2 than on a hor izon ta l  plate .  Re la t ionsh ip  (16) is eompared  in Fig .  4 with the exper iment  for  a p r e s s u r e  
of p = 12-15 mm Hg for  the sa tu ra ted  ni t rogen vapors .  

As we can see f rom Fig .  4, the g r e a t e s t  d ive rgence  f rom (6) is found for  loads  of 0.1 and 0.0563 W, 
which go beyond the l i m i t s  of the adopted a s sumpt ions .  At s m a l l e r  loads  (0.0314 and l e s s ,  F ig .  4), when the 
pe r tu rb ing  effect of convect ion flows is weake r  and the c l e a r a n c e s  a r e  s m a l l e r ,  the ag reemen t  between the 
expe r imen t  and (16) is be t t e r ,  and the quanti ty Zef f i t se l f  approaches  the t h e r m a l  conduct ivi ty of the gas. 
The e x p e r i m e n t s  show that  at s m a l l e r  loads t he re  is a lso  a reduced  effect on the p a ~  of plate posi t ion.  The 
der ived  equation (14) must  thus b e t t e r  approx imate  the r ea l  d i s t r ibu t ion  of the t e m p e r a t u r e  with a reduct ion 
in qz below 0.001 W/era  2, with the value of Zef  f in th is  ease  tending toward the coeff icient  of t he r m a l  con-  
duct iv i ty  v~. At g r e a t e r  loads ,  the mechan i sm of heat  t r a n s f e r  through the gas c l e a r a n c e  to the subl imat ing  
medium is subs tan t i a l ly  compl ica ted  and for  the de t e rmina t ion  of ~teff in this  case  we have to p e r f o r m  ad-  
di t ional  expe r imen t s .  

x ,  y ,  x 

T 

q 

q0 = Q0/hb 
c , p  

P0, r0 
F 
34 

k 

1 , 6 ,  b 

N O T A T I O N  

a r e  coord ina tes ;  
is the t ime; 
is the spec i f ic  heat  flow; 
is the speci f ic  heat  flow to the end of the plate; 
a re ,  r e spec t i ve ly ,  the spec i f ic  heat  capac i ty  and the specif ic  dens i ty  of the plate mate r i a l ;  
a re ,  r e spec t i ve ly ,  the spec i f ic  dens i ty  and heat  of subl imat ion  for  the solid gas; 
is the a r e a  of the s ide sur face  of the plate; 
is the coeff ic ient  of t h e r m a l  conduct ivi ty  for  the gas; 
is the coe f f i c i en tby  means  o fwhiehwe take into cons ide ra t ion  the effect of va r ious  f ac to r s  on the 
t r a n s f e r  of heat  through the gas; 
a r e ,  r e spec t i ve ly ,  the length, the th ickness ,  and the width of the plate.  
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