THE TEMPERATURE FIELD OF A PLATE IN A
SOLIDIFIED GAS

R. 8. Mikhal'chenko, V. ¥F. Get'manets, UDC 536.21
and V. T. Arkhipov

We examine the problem of finding the temperature field of a plate heated by a constant flow
of heat from one end and releasing heat to the solidified gas from the remaining sides through
a gas interlayer.

In certain cases we are confronted with the problem of finding the temperature field of a plate heated
from one end and giving off heat to a solidified gas from the remaining sides., The dimensions and shape
of the plate are shown in Fig. 1a,

A constant pressure — below the pressure of the triple point — is usually maintained over the surface
of a solidified gas. Then, because of the limited thermal conductivity of solidified gases, the heat from the
plate cannot be removed by conduction and an interlayer is formed about the plate as a consequence of the
sublimation of the solid phase. The growth in the thickness of this interlayer impairs the transfer of heat
between the plate and the medium and results in the gradual heating of the plate.

To simplify the problem we will make the following assumptions:

1. The heat load on the plate will be assumed to be a small and constant quantity, i.e., Ox(x, T) | X=0
= const = g; (bearing in mind that the error introduced by these assumptions is no greater than 5%, we took
qo to be less than 0.3 W/cm?).

2. On the strength of condition 1 we will assume that the plate temperature T varies over a small
interval.

3. The thermal conductivity A and the specific heat capacity ¢ is assumed constant for the entire
plate.

4. Because of the limited plate thickness § we neglect the transfer of heat between the plate and the
medium in the direction of the y-axis.

5. Considering condition 4, the limited thickness and high thermal conductivity of the plate, we as-
sume that the temperature does not change through the width and thickness of the plate and is a function
exclusively of the coordinate x and of the time 7; T =T(x, 7).

6. TFor the plate heat transfer in the direction of the z-axis we will substitute internal negative heat
sources of the same intensity, i.e., 4, (x, 7).

Derivation of the differential heat-conduction equation for the plate is accomplished in analogy with
[1}. Let us examine the heat balance of the volume element shown in Fig. 1b:
T

T

— %h_ dx 8b — 2q,dxb = cp dxb8. (D)
%

Using the heat-conduction equation qx = —)(97T/8x), we find

oT (x, ) T (x, ©) 2
¢ : =} . — ——q,(x, T). (2)
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Fig.1. Selected diagram and conditions of the problem.

To find q, we examine the transfer of heat at the side surface Ib of the plate at some arbitrary in-
stant of time. As demonstrated in Fig. 2, a gas clearance with a thickness of h(x, 7) is formed about the
plate.

7. We will assume that the transfer of heat through this interlayer from the plate to the solidified
gas can be described by the heat-conduction equation, using the effective coefficient of thermal conductivity
for the gas, i.e., ®aff = kn, considering the other means of heat and mass transfer (convection and heat
transfer by means of the sublimating vapors) [2-5]. We can then write

. T(’Cv T)—TO
- hx, T)

(3)

4q. %effs

where T, is the solid-phase temperature which is assumed to be constant, since the pressure p = const.

8. The effective thermal conductivity negs of the gas will be assumed to be constant in each specific
test, in the light of assumption 2.

9. The thickness h of the gas clearance is found on the assumption that the flow of heat from the sur-
face b inthe direction of the z-axis goes entirely to the sublimation of the solid phase, i.e., the heat capacity
of the gas is also neglected in the light of assumption 2.

T
Equating the heat f qz(x, 7)d7 evolved from a unit surface of the plate during the time 7 to the heat of
0

sublimation of the solid gas beneath this unit surface, we find the relationship

fqz (x, 1) dt = pofoh (%, 7). (4)
H

Using (3), we write (2) in the form

CPBT(x, T ) T(x, 1) 2 T 9)—T,
ot oxt 8 h(x, )

Reff (5)

Let us find the boundary-value problems for (5). We assume that the plate temperature at the initial
instant of time is equal to the solid~phase temperature, i.e.,

T(x, 0) =T,
To find the boundary condition for x = 0 we use the condition

aT
G0, 1) =g, =—A——(0, 7).
Ox

Neglecting the heat transfer at the end of the plate when x = [, because of the smallness of its area &b
as compared to the side surface 2bi, we find

qx(lv 17) =—h —’aT (l, T) = 0.
ox
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Fig.2. Proposed shape of the gas clearance about the plate: 1)
solidified gas; 2) plate.
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The problem thus reduces to the solution of (5) for the following boundary conditions:

T 00=T, T )—Ty>0, T30 (6)
aT 9o
0, 1) = — -2 7
0x o 9= A ™
T4, =0 (8
Ox

An M-20 digital computer was used to solve (5) on the basis of an implicit scheme propsed by Krank
and Nicholson; the error in the approximation of the difference scheme in this case is of the order of

e = O [(At)*] - O [(Ax)*] = 0 (0.001%) + O (0.0252).
It is convenient to present h(x, 7) in the form

T(x 5 —T,

hv, 1) = h(x, 1— A7)+ 1B D =To
(D) = b = ) e A

KefrAT. (9)

The results of the solution showed that the plate very rapidly (in less than 0.5 h) enters a thermal re-
gime close to the regular, during which the temperature at each point on the plate rises linearly with time,
while the temperature distribution T(x, 7) — T(l, 7) and the temperature difference across the length of the
plate are independent of time. After entry into the regular regime, we find that q, virtually ceases to de-
pend on the coordinate x. This can be explained by the constancy of q, and by the fact that — because of the
smallness of the ratio qy/x — the temperature difference across the length of the plate is small in compari-
son with the difference between the plate and the solid gas. The indicated constancy of gz is in good agree-
ment with the constancy of the temperature difference across the length of the plate.

We will give an approximate analytical solution of the problem, using the constancy of q, over the
length of the plate.

On the basis of condition 2 we will neglect the heat spent on altering the heat capacity of the plate as

small in comparison with the heat expended on sublimation. The heat-balance equation for the entire plate
then yields

N (10)
==
while (4) assumes the form
g = L0 (1)

Equation (2) under these assumptions can be simplified

2
, LT Y G (12)
dx? {
After double integration of this equation with the use of (7), we have
g ** o
= — oy L,
Ao p T
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Fig.3. Arrangement of the plate and the shape of the gas
clearance about it: 1) heater; 2) plate; 3) solidified gas.

To determine the integration constant cy, let us examine the mean-integral temperature over the
length of the plate; this is equal to

.
1 l
T =—2—5‘T(x, 'c)dx=ci-%?.
0

On the other hand, the mean-integral temperature can be found from (3), (10), and (11):
q &2 1

T

T4 T, (13)

From the last three equations, the expression for the temperature field of the plate assumes the form

Gy ¥ ‘N G ! 9 & 1
T(x, ) =T — =t -+ - .
* 1) =To+ o3 oo et

L B LR 14
A2 A 4 P (14)

It foltows from (14) that the temperature difference across the length of the plate is constant in time, i.e.,

9% !
70, vv—T(4 1) =2 — . (15)
©, 7 ¢ 7 r 2
Since (14) and (15) have been derived on the assumption that q, = const, they will be valid on elapse of

a certain period of time from the onset of heating, at which time we have a regime that is close to the reg-
ular.

The approximate solution (14) differs from the exact solution given by the computer by no more than
3-5%, but it substantially simplifies the calculations of the plate temperatures.

We performed a number of experiments to determine the effective coefficient of heat transfer between
the plate and the solidified gas.

Solid nitrogen is used as the cooling agent; the test plate is frozen into the solid nitrogen, as shown in
Fig.3. The plate is fashioned of two parts with a thickness of 0.1 mm, with a double-helical heater attached
in such a manner that it is not in electrical contact with either part of the plate. Differential copper—con-
stantan thermocouples were used to measure the temperature difference between the plate and the solid
cooling agent with a specified heater power which was determined by measuring the current and voltage in
the circuit. The stability of the heat supply was =1%. The temperature difference was measured with an
accuracy of +0.05°K.

To reduce spurious influxes of heat to the test plate, all of the leads were kept to a diameter of 0.1
mm and, in addition, at some distance from the plate (of the order of 150 mm) the leads were interrupted
with a temperature control set for a temperature close to that of the test plate. An experiment with a zero
load on the plate showed that the plate temperature within the limits of measurement accuracy remains con-
stant and equal to T, for 15-20 h, i.e., there is virtually no spurious influx of heat.

Because of the smallness of the end surface in comparison with the side surfaces, we can neglect the
transfer of heat at the end of the plate. Bearing this in mind, as well as the excellent thermal conductivity
of the plate material, in addition to the fact that the heater was wound uniformly over the entire surface, we
can assume that the plate exhibited an identical temperature over the entire surface In this connection, the
plate temperature will be determined from (13), which can be presented in the form

1 (&Y
T(T)—T0f4“effporo ( F ) i (19)
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During the test, at a constant heat load Q, on the

It}
’ ! ¢ / plate, we measured the temperature difference T(7)
& 5 / ~ Tq over time. The tests were performed at various
N4 loads Q,.
6 / © / ;
/7 i -~ The experiment showed that the plate tempera-
9/ o b o 2‘}/0’/ ture can be described by (16), but for each specific
“ 3 - case we must know the value of the effective coefficient
@ ° c / ’
e//o / 7 of thermal conductivity e, which, because of the
£ /r . pe M;,.}L——"‘r" complexity of the mechanism of heat transfer to the
/o ;ﬂﬂ_ﬁ___ﬁ——w——"""" sublimating medium, is a function of numerous vari-
0 5 ) s Pr ables. In the general case, this coefficient proves not
Fig.4. Time variation in the temperature gra- to be equal to the coefficient of thermal conductivity
dient between the horizontal plate and the solid- for the gas and is a function of the pressure of the
ified gas for various heat loads, T — T, in °K; saturated vapors, the position (vertical or horizontal),
T,in h; Qp, in W: 1) Q = 0.1; 2) 0.0563; 3) 0.0314; and the dimensions of the heat-release surface and
solid lines denote the theoretical relationship the magnitude of the heat load @, on the specimen,
from (16) for k = 1.5; the dots denote the experi- which in turn determines the rate of sublimation and
ment,. the velocity of the forced motion of the gas in the clear-

ance. The experimental derived values for wggpvaried
in a wide range from k = 1 to 4. Here the thermal conductivity of the gaseous nitrogen was assumed to he
equal to w = 0,007 W/deg.m. On a vertical plate the value of neff proved to be greater by a factor of
1.3-2 than on a horizontal plate. Relationship (16) is compared in Fig,4 with the experiment for a pressure
of p = 12-15 mm Hg for the saturated nitrogen vapors. '

As we can see from Fig. 4, the greatest divergence from (6) is found for loads of 0.1 and 0.0563 W,
which go beyond the limits of the adopted assumptions. At smaller loads (0.0314 and less, Fig.4), when the
perturbing effect of convection flows is weaker and the clearances are smaller, the agreement between the
experiment and (16) is hetter, and the quantity wefr itself approaches the thermal conductivity of the gas.
The experiments show that at smaller loads there is also a reduced effect on the part of plate position. The
derived equation (14) must thus better approximate the real distribution of the temperature with a reduction
in g, below 0.001 W/cm?, with the value of weff in this case tending toward the coefficient of thermal con-
ductivity ». At greater loads, the mechanism of heat transfer through the gas clearance to the sublimating
medium is substantially complicated and for the determination of wgpp in this case we have to perform ad-
ditional experiments.

NOTATION

X, y, X are coordinates;

T is the time;

q is the specific heat flow;

dy = Qy/8b  is the specific heat flow to the end of the plate;

c,p are, respectively, the specific heat capacity and the specific density of the plate material;

Py T are, respectively, the specific density and heat of sublimation for the solid gas;

F is the area of the side surface of the plate;

2 is the coefficient of thermal conductivity for the gas;

k is the coefficient by means of which we take into consideration the effect of various factors on the
transfer of heat through the gas;

,6,b are, respectively, the length, the thickness, and the width of the plate.
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